
Ž .Decision Support Systems 30 2001 383–392
www.elsevier.comrlocaterdsw

Exotic electricity options and the valuation of electricity
generation and transmission assets

Shi-Jie Deng a,), Blake Johnson b, Aram Sogomonian c

a IE and OR Department, UniÕersity of California at Berkeley, CA 94720, USA
b EES and OR Department, Stanford UniÕersity, CA 94305, USA

c Risk Management, Pacificorp, Portland, OR 97232, USA

Abstract

We present and apply a methodology for valuing electricity derivatives by constructing replicating portfolios from
electricity futures and the risk-free asset. Futures-based replication is made necessary by the non-storable nature of
electricity, which rules out the traditional spot market, storage-based method of valuing commodity derivatives. Using the
futures-based approach, valuation formulae are derived for both spark and locational spread options for both geometric
Brownian motion and mean reverting price processes. These valuation results are in turn used to construct real options-based
valuation formulae for generation and transmission assets. Finally, the valuation formula derived for generation assets is
used to value a sample of assets that have been recently sold, and the theoretical values calculated are compared to the
observed sales prices of the assets. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

With deregulation sweeping through the US elec-
tric power industry and a fully competitive market-
place for electricity taking shape, electric utilities
and their customers accustomed to a cost-recovery
pricing structure for electricity must adapt to
market-based pricing. Risk management needs this
transition has generated have made electricity deriva-
tives one of the fastest growing derivatives markets,
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as financial institutions, utilities and other energy
market participants work to provide the tools neces-
sary to manage the price and investment risks associ-
ated with competitive markets. While many of the
risk-management tools and methods now well estab-

w xlished in other markets 1,2,5,8 can be readily trans-
ferred to the electricity markets, the unique charac-
teristics of electricity and electricity markets also
present new challenges to the risk-management dis-
cipline. The most important of these are the chal-
lenges that the non-storable nature of electricity pre-
sents to the traditional methods of modeling price

w xprocesses and valuing derivatives 11 . Specifically,
due to the non-storable nature of electricity, the
traditional storage-based, no-arbitrage methods of
valuing commodity derivatives are unavailable. In

Ž .addition, electricity prices can and do demonstrate
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properties such as strong mean reversion over short
time horizons that would be inconsistent with an
efficient market for a storable good. A second risk-
management challenge that electricity markets pre-
sent is the need to value a range of cross-commodity

w xtransactions, such as spark and locational spreads 3 .
In this paper, we present tools to address these

unique properties of electricity and electricity deriva-
tives. First, we develop a method to value electricity
derivatives by replicating them with futures contracts
rather than by attempting to store or borrow electric-
ity in the spot market. This allows us to apply
traditional no-arbitrage-based methods of derivatives
valuation and to proceed without requiring the as-
sumption that electricity is storable. We then present
closed-form expressions for the value of a range of
cross-commodity derivatives, including spark and lo-
cational spread options, both for the case in which
the underlying price processes follow geometric
Brownian motion, and for the more plausible case in
which prices are mean reverting. These results are

w xclosely related to those of Shimko’s 9 analysis of
w xfutures spread options and Margrabe’s 7 analysis of

Žexchange options. Margrabe’s work is relevant since
an exchange option can be thought of a spread

.option with a zero strike price. Shimko’s results,
however, are for a futures price process derived from
a model of the spot price and convenience yield of a
storable good, while Margrabe’s are exclusively for
geometric Brownian motion processes. After deriv-
ing the valuation formulae, we demonstrate how
these results can be used to value both generation

Ž w xand transmission assets see 4,10 for a review of
real options and decision analytic approaches to ca-

.pacity valuation , and present a preliminary compari-
son between the values these models generate and
the actual prices at which these types of assets have
recently been sold.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce the set of cross-
commodity derivatives we will consider in the paper,
and identify some of their basic characteristics. In
Section 3, we describe how these derivatives can be

Ž .replicated and thus valued by arbitrage using fu-
tures contracts, and present the principal valuation
results of the paper. In Section 4, we use these
results to develop a real-options-based methodology
for valuing generation and transmission assets, and

present the results of our preliminary empirical eval-
uation of the effectiveness of the methodology.

2. Cross-commodity electricity derivatives

There are two principal categories of cross-com-
modity electricity derivatives; spark spread, or heat-
rate-linked derivatives, and locational spread deriva-
tives. We consider each below.

2.1. Spark spread, or heat rate-linked deriÕatiÕes

The primary cross-commodity transaction in elec-
w xtricity markets is the spark spread 6 , which is based

on the difference between the price of electricity and
the price of a particular fuel used to generate it. The
spread between the price of electricity and a fuel that
can be used to generate it is of interest since it is this
spread that determines the economic value of genera-
tion assets that can be used to transform the fuel into

Želectricity This idea is analogous to the concept of
the Acrack spreadB used in the oilrrefining industry.
In that case the relevant spread between crude oil

Žand refined products like diesel or gasoline see
w x. .Shimko 9 . The amount of fuel that a particular

generation asset requires to generate a given amount
of electricity will of course depend on the asset’s
efficiency. This efficiency is summarized by the
asset’s heat rate, which is defined as the number of

Ž . ŽBritish thermal units Btu of the input fuel mea-
.sured in millions required to generate 1 megawatt

Ž .hour MWh of electricity. Thus, the lower the heat
rate, the more efficient the facility. The spark spread
associated with a particular heat rate is defined as the
current price of electricity less the product of the
heat rate and the current fuel price. Thus, the lower
the heat rate, the lower the fuel price, and the higher
the electricity price, the larger the spark spread.

In a deregulated market, presumably only assets
that have a positive spark spreads under prevailing
market conditions will be operated. This leads natu-
rally to the definition of the prevailing market im-
plied heat rate H as:
Hsnumber of MM Btu needed for a marginal genera-

ting plant to generate 1 MW h of electricity
SE

s MM BturMW h 1Ž .
SG
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where S is the spot price of electricity per MWhE

and S is the spot price of the generating fuel perG

MM Btu. With the notion of a heat rate established,
we define European spark spread put and call op-
tions.

Definition 1. A European spark spread call option
Ž .written on fuel G at a fixed or AstrikeB heat rate

K gives the option holder the right but not theH

obligation to pay K times the unit price of fuel GH

at the option’s maturity T and receive the price of 1
unit of electricity. Let ST and ST be the unit spotE G

prices of electricity and fuel at time T , respectively.
Ž tDenote the value of the option at time t by C S ,1 E

t .S , t . Then the payoff of the option at maturity timeG

T is:

C ST , ST , K , T smax ST yK ST , 0 2Ž .Ž . Ž .1 E G H E H G

Definition 2. A European spark spread put option
written on fuel G at a fixed heat rate K gives theH

option holder the right but not the obligation to pay
the price of 1 unit of electricity and receive K H

times the unit price of fuel G at maturity time T.
Ž tDenote the value of the option at time t by P S ,1 E

t .S , t . Then the payoff of the option at time T is:G

P ST , ST , K , T smax K ST yST , 0 3Ž .Ž . Ž .1 E G H H G E

The following example provides a simple illustration
of how spark spread options can be used to manage
electricity price risk.
v A power marketer in a region where the marginal
generating fuel is natural gas would like to buy
power at time T at a market implied heat rate not to
exceed K . An agreement providing such a heat rateH

cap would ensure the marketer power at time T at a
Ž .price given by S =min H, K . Assuming theG H

marketer sells the power into the spot market at time
Ž T T Ž T ..T , his payoff will be S yS =min H , K ,E G H

T Ž T .which is equal to S =max H yK , 0 . BringingG H
T Ž T TS inside the brackets, the payoff is max S yK S ,G E H G
.0 , which is exactly the same as that of a European

spark spread call option with strike heat rate K .H

The power marketer can therefore achieve his goal
by purchasing this spark spread call.

Throughout the remainder of the article, we make
the following assumptions.

Assumption 1. A complete set of futures contracts
for electricity and for the relevant generating fuels
are traded.

Assumption 2. The risk-free interest rate r is con-
stant.

w xFollowing Shimko 9 , we next provide a put-call
parity relationship between the spark spread put and
call options, as well as upper and lower bounds on
their values. We delay making specific assumptions
about the price processes that electricity and the
generating fuels follow until Section 3.

( ) t tProposition 1. Put-Call Parity Let F and FE G

denote the futures prices of electricity and the gener-
ating fuel, respectiÕely. The following parity rela-
tionship holds for European spark spread put and
call options with the same fixed heat rate K andH

expiration date t.

C sP qeyr t F t yK F t 4Ž .Ž .1 1 E H G

Proof. At time t, the payoff of a long position in 1
Ž tunit of spark spread call option C is max S y1 E

t .K S , 0 ; the payoff of 1 unit of spark spread putH G
Ž t t .option P is max K S yS , 0 . Consequently,1 H G E

Ž . Ž tthe payoff of C yP at maturity time t is S y1 1 E
t . Ž t t . yr tK S . The present value of S yK S is eH G E H G

Ž t t .F yK F . Therefore,E H G

C yP seyr t F t yK F t 5Ž .Ž .1 1 E H G

B

( )Proposition 2. No-arbitrage lowerrupper bounds
Let F t and F t denote the futures prices of electricityE G

and the generating fuel, respectiÕely. Then the Õalue
of a spark spread call option C can be bounded1

aboÕe and below as follows:

eyr t max F t yK F t , 0 F C F eyr tF t 6Ž .Ž .E H G 1 E

Ž .Proof. The first inequality is by put-call parity 4
and the fact P G0. The second inequality is due to1

Ž t t . tthe fact max S yK S , 0 FS at time t and theE H G E
Ž t t . tpresent values of max S yK S , 0 and S are CE H G E 1

and e- r tF t , respectively.E B
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2.2. Locational spread options

ŽDue to transmission costs and constraints note
that the impact of transmission constraints is com-
pounded by the non-storability of electricity, which

.forces real time delivery. , substantial differences
frequently exist between the price of electricity at
different locations. We refer to these differences as
locational spreads, and define call options on them as
follows.

Ž .Definition 3. Locational spread : a European call
option on the locational spread between location one
and location two with maturity T gives its holder the
right but not the obligation to pay the price of 1 unit
of electricity at location one at time T and receive
the price of K units of electricity at location twoL
Žtransmission cost from location 1 to 2 can be incor-

. Tporated by setting K being less than 1 . Let S beL i
Ž .the unit price of electricity at location i is1, 2 at

time T. Denote the value of the option at time t by
Ž t t .C S , S , K , t . Then the payoff of the option at2 1 2 L

time T is:

C ST ,ST , K ,T smax ST yK ST , 0 7Ž .Ž . Ž .2 1 2 L 1 L 2

A European locational spread put option can be
defined in a similar way.

3. Valuation of electricity derivatives

In this section, we present a futures-based method
of replicating electricity derivatives, and illustrate the
method by using it to derive explicit expressions for
the value of the spark spread and locational spread
options defined above. Valuation equations are pro-
vided for these instruments for both geometric Brow-
nian motion price processes and mean-reverting price
processes. In both cases we explicitly derive only the
value of the call options. The value of put options
can then be derived using the put-call parity relation-
ship presented in Section 2.

3.1. Futures-based replication of electricity deriÕa-
tiÕes

As noted above, because electricity is non-stora-
ble, the traditional storage-based methods of con-

structing replicating portfolios for commodity deriva-
tives cannot be used to value electricity derivatives.
In place of the storage-based methods, we present a
method for replicating electricity derivatives by dy-
namically trading futures contracts of the appropriate
maturity. Since, at maturity, the price of a futures
contract must converge to the then current spot price,
the methodology permits exact replication. Since the
precise nature of the replicating strategy will natu-
rally depend on the specific derivative being repli-
cated, to illustrate the method we use it to derive the
replicating strategy for spark and locational spread
options. We do so first under the assumption that the
relevant futures price processes follow geometric
Brownian motion processes, and then under the more
reasonable assumption that they follow mean revert-
ing processes.

3.2. Geometric Brownian motion price process

We first consider the case in which the futures
price processes of electricity and the appropriate
generating fuel of the relevant maturity, F and F ,E G

follow geometric Brownian motion processes

d F rF sm d tqs d B1
E E E E

8Ž .
2d F rF sm d tqs d BG G G G

where B1 and B2 are two Wiener processes with
instantaneous correlation r. m , m , s , and sE G E G

are assumed to be constants for the moment. The
valuation results are therefore the same as those in

w xRef. 7 except that the underlying are futures con-
tracts. The more general case where the volatility
and correlation parameters can be functions of time
is considered in the mean-reversion model.

3.2.1. Valuation of spark spread options
Denote the time-t value of a spark spread call

Ž .option which matures at time T by V x, y, t '
Ž t,T t,T . t,TC F , F , K , Ty t and let F represent the1 E G H )

price at time t of the commodity futures contract
with maturity date T. By constructing an instanta-
neously risk-free portfolio using the electricity and
generating fuel futures contracts and the riskless
asset, it follows that C , normalized by the value of1
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the risk-free asset, must satisfy the partial differential
Ž .equation PDE :

1
2 2 2 2yV q x V s q2 rs s xyV qy V st x x x x y x y y y y2

s0 9Ž .
Ž . Žwith boundary conditions V x, y, T smax xyy,

. Ž . Ž .0 , V x, 0, t sx, and V 0, y, t s0.

( )Proposition 3. Value of a spark spread call option
The closed-form solution for C is:1

C F t ,T , F t ,T , K , Ty tŽ .1 E G H

yr ŽTyt . t ,T t ,Tse F N d yK F N d 10Ž . Ž . Ž .E 1 H G 2

where

ln F t ,Tr K F t ,T qÕ2 Ty t r2ÕŽ .Ž .Ž .E H G
d s1 'Ty t

'd sd yÕ Ty t2 1

2 2 2Õ ss y2 rs s qsE E G G

Ž t,T t,T . r ŽTyt .Proof. Verify VsC F , F , K , Ty t e1 E G H
Ž .solves PDE 9 with the corresponding boundary

conditions. B

3.2.2. Valuation of locational spread options
The value of the locational spread call option can

be derived in exactly the same way the value of the
spark spread call option was derived above. Specifi-
cally, defining F and F to be the geometricE,1 E,2

Brownian motion price processes that the futures
prices of electricity at locations 1 and 2 follow, we
have:

(Proposition 4. Value of a locational spread call
)option The Õalue of C is giÕen by2

C F t ,T , F t ,T , K , Ty tŽ .2 E ,1 E ,2 L

yr ŽTyt . t ,T t ,Tse F N d yK F N d 11Ž . Ž . Ž .E ,1 1 L E ,2 2

where

ln F t ,TrK F t ,T qÕ2 Ty t r2Ž .Ž .E ,1 L E ,2
d s1 'Õ Ty t

'd sd yÕ Ty t2 1

2 2 2Õ ss y2 rs s qsE ,1 E ,1 E ,2 E ,2

3.3. Mean-reÕerting price process

In this section, we assume that the futures price
processes of electricity F and of the relevant gener-E

ating fuel F follow the mean-reverting processesG

d F sk m t y ln F F d tqs t F d B1Ž . Ž .Ž .E E E E E E E

2d F sk m t y ln F F d tqs t F d BŽ . Ž .Ž .G G G G G G G

12Ž .
Ž . Ž .where s t and s t are functions of time t,E G

Ž . Ž .m t and m t are the long-term means, k andE G E

k are the mean-reverting coefficients, and B1 andG

B2 are, as above, two Wiener processes with instan-
taneous correlation r. The mean-reverting assump-
tion on the futures price processes put restrictions on

Ž . Ž .the choice of volatility functions s t and s t .E G

Among many other forms, the following is a feasible
one.

s t ss eyk E
) t , s t ss eyk G

) t 13Ž . Ž . Ž .E E G G

3.3.1. Valuation of spark spread options
Denote the time t value of a spark spread call

Ž .option which matures at time T by V x, y, t '
Ž t,T t,T .C F , F , K , Ty t . Applying the same repli-1 E G H

cation arguments applied above, it follows that C e1
r ŽTyt . must satisfy the PDE:

1
2 2yV q x V s t q2 rs t s t xyVŽ . Ž . Ž .t x x x x y x y2

2 2qy V s t s0 14Ž . Ž .y y y

Ž . Žwith boundary conditions V x, y, T smax xyy,
. Ž . Ž .0 , V x, 0, t sx, and V 0, y, t s0.

( )Proposition 5. Value of a spark spread call option
The closed-form solution for C is:1

C F t ,T , F t ,T , K ,Ty tŽ .1 E G H

yr ŽTyt . t ,T t ,Tse F N d yK F N d 15Ž . Ž . Ž .E 1 H G 2

where

ln F t ,Tr K F t ,T qÕ2 Ty t r2Ž .Ž .Ž .E H G
d s1 'Õ Ty t

'd sd yÕ Ty t2 1

T 2 2s s y2 rs s s s qs s d sŽ . Ž . Ž . Ž .H E E G G
t2Õ s

Ty t
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Fig. 1. Value of spark spread call under mean-reversion and GBM.

Ž t,T t,T . r ŽTyt .Proof. Verify VsC F , F , K , Ty t e1 E G H
Ž .solves PDE 14 with the corresponding boundary

conditions. B

Fig. 1 illustrates the value of spark spread options
Ž .under both the geometric Brownian motion GBM

price process assumption and the mean-reverting
price process assumption. When the underlying price
process is actually mean-reverting, the geometric
Brownian motion assumption leads to the overvalua-
tion of spark spread options, especially those with
long maturities.

Several comparative static properties of the spark
spread call option value can be derived by investigat-
ing the sign of the partial derivatives of C with1

respect to their parameters.

Proposition 6.

t ,T Ž . t ,T Ž . Ž .As F p increases , or F o decreases ´C p increasesE G 1

t ,TFEt ,TF p and p´C pG 1t ,TFG

ro or ro´C p1

16Ž .

3.3.2. Valuation of locational spread options
Defining F and F to be the mean-revertingE,1 E,2

price processes that govern the futures prices of
electricity at locations 1 and 2 and following the
derivation above, we have:

( )Proposition 7. Value of a locational spread option
The Õalue of C is giÕen by2

C F t ,T ,F t ,T , K , Ty tŽ .2 E ,1 E ,2 L

yr ŽTyt . t ,T t ,Tse F N d yK F N d 17Ž . Ž . Ž .E ,1 1 L E ,2 2

where
t ,T t ,T 2 Ž .ln F rF q Õ T y t r2Ž .E ,1 E ,2

d s1 'Õ T y t

'd s d y Õ T y t2 1

T 2 2w Ž . Ž . Ž . Ž .xs s y2 rs s s s qs s d sH E ,1 E ,1 E ,2 E ,2
t2Õ s

T y t

4. Real options valuation of generation and trans-
mission assets

The right to operate a generation asset with heat
rate H that uses generating fuel G is clearly given
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by the value of a spark spread option with AstrikeB
heat rate H written on generating fuel G. Similarly,
the value of a transmission asset that connects loca-
tion 1 to location 2 is equal to the sum of the value
of the locational spread option to buy electricity at
location 1 and sell it at location 2 and the value of
the option to buy electricity at location 2 and sell it a

Žlocation 1 in both cases, less the appropriate trans-
.mission cost . This equivalence between the value of

appropriately defined spark and locational spread
options and the right to operate a generation or a
transmission asset can be easily used to value such
assets. In this section we illustrate this approach by
developing a simple spark spread-based model of the
value of a gas-fired generation asset. Once estab-
lished, we fit the model and use it to generate
estimates of the value of several gas-fired plants that
have recently been sold. The accuracy of the model
is then evaluated by comparing the estimates con-
structed to the prices at which the assets were actu-
ally sold.

In the analysis we make the following simplifying
assumptions about the operating characteristics of
the generation assets under consideration.

Assumption 3. Ramp-ups and ramp-downs of the
facility can be done with very little advance notice.

ŽAssumption 4. The facility’s operation e.g., start-
.uprshutdown costs and maintenance costs are con-

stant.

These assumptions are reasonable, since for a
typical gas turbine combined cycle cogeneration plant

Ž .the response time ramp uprdown is several hours
Žand the variable costs e.g., operation and mainte-

.nance are generally stable over time.
To construct a spark spread-based estimate of the

value of a generation asset, we estimate the value of
the right to operate the asset over its remaining
useful life. This value can be found by integrating
the value of the spark spread options over the re-
maining life of the asset. Specifically,

Definition 4. Let 1 unit of the time t capacity right
of a natural gas-fired electric power plant represent
the right to convert K units of natural gas into 1H

unit of electricity by using the plant at time t, where
K is the plant’s heat rate.H

The payoff of 1 unit of time-t capacity right is
Ž t t . t tmax S yK S , 0 , where S and S are the spotE H G E G

prices of electricity and natural gas at time t, respec-
tively. Denote the value of 1 unit of the time t

Ž .capacity right by u t .

Definition 5. Denote the virtual value of 1 unit of
capacity of a gas-fired power plant by V. Then, V is
equal to 1 unit of the plant’s time-t capacity right

w xover the remaining life 0, T of the power plant, i.e.
T Ž .VsH u t d t.0

Without making any distributional assumptions
about the price processes that St and St follow, weE G

have the following proposition.

Proposition 8. The Õalue of 1 unit of capacity V of a
plant that has a useful life of T has both a lower
bound and an upper bound:

T Tyr t T t yr t te max F yK F ,0 d tFVF e F d tŽ .H HE H G E
0 0

18Ž .

Proof. By definition and Proposition 2. B

If we further assume that the price processes of
electricity and natural gas spot and futures prices
follow the mean-reverting processes as given by
Ž . Ž . Ž . Ž .12 , then we have u t s C t where C t is1 1

given by Proposition 5. The value of a gas-fired
power plant with lifetime T is therefore

T
V s C t d t 19Ž . Ž .Hgen 1

0

Similarly, if we assume that the price processes of
the electricity futures prices at two different loca-
tions follow mean-reverting processes, the value of a
transmission line connecting the two locations a and
b in a network is

T
V s C t qC t d t 20Ž . Ž . Ž .Htran 2,1 2,2

0

Ž . Ž .where C t and C t represent the locational2,1 2,2

spread option value at time t from a to b and from
Ž . Ž .b to a, respectively. Eqs. 19 and 20 are the two
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Fig. 2. Electricity and natural gas futures price curve.

fundamental valuation formulae we propose for the
valuation of generation and transmission assets in a
competitive electricity market.

4.1. Application of the model to recent generation
asset sales

Ž .To evaluate the accuracy of 19 , we fit the model
and use it to construct estimates of the value of
several generation assets that have been recently
sold. For purposes of comparison, we also estimate
the value of each asset using a standard discounted

Ž .cash flow DCF calculation.
In order to fit the model, we first estimate the

volatilities of the price processes of the relevant
futures contracts. Let f t be the price of the futuresn

contract that matures in n months, and assume that
f t follows a mean-reverting process of the kindn

considered above. Let Rt ' ln f t, thenn n

d R sk m yR d tqs d B 21Ž .Ž .ˆn 1 n n n

We estimate s using the New York Mercantilen
Ž .Exchange NYMEX electricity futures historical

price data. The natural gas volatility term structure
and the gas-to-electricity price correlation are also
estimated using historical data on the NYMEX natu-

Ž .ral gas Henry Hub futures contracts. Once esti-
mated, these parameters along with implied volatility

from the market traded call options are used to
calibrate the parameters in the volatility functions
Ž . Ž .13 . We will use 13 in the valuation formulae
derived in Section 3 to construct real-options-based
estimates of the value of the assets in question. To
calculate the discounted cash flow value of the assets
we use the relevant electricity and natural gas futures
curves.

The sample of generation assets considered con-
sists of four gas-fired power plants which Southern
California Edison recently sold to Houston Indus-
tries. At present, not all of the individual plant dollar
investments have been made public. As a proxy, we
use the total investment made by Houston Industries
ŽUS$237 million to purchase four plants — Coolwa-

.ter, Ellwood, Etiwanda and Mandalay , divided by
Ž .the total number of megawatts MW of capacity

Ž .2172 MW to get approximately US$110,000rMW
Ž .or US$110rkW of capacity for the entire package

1 Žof plants. However, the Coolwater Plant Daggett,
. ŽCA is the most efficient with an average heat rate

.of 9500 of the four plants in the package and thus

1 The Coolwater Plant is made up of four units: two 256-MW
combined cycle gas turbines with a steam turbine, and two
conventional turbines with capacity 65 MW and 81 MW each.
Some repower work has been done on the larger units.
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Fig. 3. Capacity value of a gas-fired plant.

should have a higher value per MW. We therefore
assume that the implied market value for Coolwater
could range from US$110,000 to US$220,000 per
MW, or equivalently, US$110rkW to US$220rkW.

Using the NYMEX electricity and natural gas
Ž .futures price data on October 15, 1997, see Fig. 2 ,

we compute both the option value and DCF value
Ž .using a risk-adjusted discount rate of 10% of a
gas-fired plant with various possible heat rates as-
suming a remaining operating life of 15 years for the
plant. It is also assumed the plant is operated during
peak hours only. Fig. 3 shows the plot of the option
values and the DCF values of a plant of various
possible heat rates using forward curves at different
times and at different trading hubs.

We can see that the option values of capacity are
significantly higher than the DCF values. For heat
rate higher than 9500 BturkW h, the DCF values of
capacity are close to zero. For example, at the heat
rate level of 9500 and using the electricity forward

Ž .curve at Palo Verde PV , the theoretical option-based
capacity value of a plant comparable to the Coolwa-
ter Plant 5 is around US$185rkW, while the DCF
valuation is only US$28rkW.

Remark. The natural electricity trading hub for
Coolwater to sell into is the Mead hub. However,
due to the liquidity of the Palo Verde financial

futures contracts we use the PV futures contracts as a
proxy for the electricity price information for Cool-
water. In addition, the basis differential associated
with PVrMead is typically not large.

5. Conclusions

This article has presented a methodology for valu-
ing electricity derivatives by constructing replicating
portfolios with futures contracts and the risk-free
asset. Futures-based replication is made necessary by
the non-storable nature of electricity, which rules out
the traditional spot market, storage-based method of
valuing commodity derivatives. Once developed, the
methodology was used to derive valuation formulae
for both spark and locational spread options when
the prices of the underlying assets follow either
geometric Brownian motion or mean reverting pro-
cesses. These valuation results were in turn used to
construct real-options-based valuation formulae for
generation and transmission assets. Application of
the generation asset valuation formula to a sample of
recent asset sales suggests that the spark spread
analysis generates reasonable estimates of the actual
market value of the assets, and certainly more accu-
rate estimates than those which traditional DCF
methods provide. The estimates generated could be
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improved by incorporating a greater level of detail
about the plants, particularly their hourly and daily
operating optionality. Analysis of this kind presents a
natural avenue for future research.
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